To be concrete, consider a brick, set on a table, that is then pivoted around one corner. The before and after positions of the brick are characterized by the six edges of the brick meeting the pivot corner

The Euler angles are three angles between the before and after edges. If, for example, a satellite has spin control in two orthogonal directions, then reorienting the satellite can be accomplished by using the Euler angles directly, in the moving axes definition.

Euler's rotation theorem states that, in 3D space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a rotation about a fixed axis through that point.

A rotation represented by Euler angles with $(\varphi, \theta, \psi)=\left(-60^{\circ}, 30^{\circ}, 45^{\circ}\right)$ using the 3-1-3 general (co-moving axes) convention.

Euler's equations \square describe the rotation of a rigid body in a frame of reference fixed in the rotating body

$$
I_{1} \omega_{1}+\left(I_{3}-I_{2}\right) \omega_{2} \omega_{3}=N_{1} \quad I_{2} \omega_{2}+\left(I_{1}-I_{3}\right) \omega_{3} \omega_{1}=N_{2} \quad I_{3} \omega_{3}+\left(I_{2}-I_{1}\right) \omega_{1} \omega_{2}=N_{3}
$$

where N_{k} are the applied torques, I_{k} are the principal moments of inertia and w_{k} are the components of the angular velocity vector along the principal axes.
Euler-Rodrigues parameters and formulas, also called Euler parameters
The Euler-Rodrigues parameters are 4 numbers a, b, c, d such that $a^{2}+b^{2}+c^{2}+d^{2}=1$.
The Euler-Rodrigues formulas express the elements of a 3D rotation matrix in terms of the Euler-Rodrigues parameters, and occur in practice in software for artificial satellite altitude control or 3D computer games.

Euler's forward integration method

In mathematics and computational science, Euler integration method is the most basic kind of numerical integration for calculating trajectories from forces at discrete timesteps. More generally, the method is a numerical procedure for solving first-order differential equations with a given initial value. It uses the series $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$

Euler's disk is a circular disk that spins, without slipping, on a surface. A typical example is a coin spinning on a table. Solving the coin's motion equations requires Euler's equations. The secret of the unusual properties of Euler's disk is its very low energy loss due to friction. Like a maglev train, a small amount of energy produces a surprising amount of motion. If laid end-to-end, 100,000 Euler's disks would stretch out for 4 miles and weigh 50 tons, the same as one typical battle tank!

Euler, from 1760 onwards, was the first to study the general problem of three bodies under mutual gravitation (rather than looking at bodies in the solar system). When one body has negligible mass it is assumed that the motions of the other two can be solved as a two body problem, the body motions of the other two can be solved as a two body problem, the body
of negligible mass having no effect on the other two. Then the problem is of negligible mass having no effect on the other two. Then the problem is
to determine the motion of the third body attracted to the other two bodies to determine the motion of the third body attracted to the other two bodies
which orbit each other. Even in this form the problem does not lead to exact solutions. Euler, however, found a particular solution with all three bodies in a straight line. golf ball.

Power used by one 100 watt light bulb = Power used by 100 '000 Euler's disks spinning continuously Euler's Disk

Euler's integration method is very useful to estimate the time position of a flying object, for example of a

The rotation of a sattelite or of a tennis ball can be modeled with Euler's equations of rigid bodies.

The Euler-Rodrigues formulas express the elements of a 3D rotation matrix and are now used in many software to control satellite altitude, flight simulation or 3D video games.

Using Euler's equations of motion, one can show that as the disk loses energy, the soaring pitch produced by the rolling point of contact increases towards infinity. This is a beautiful example of the subtle and elegant motion of the toy.
THE GFFICIAL WEBSITE

Many other interesting and solved problems about the Euler's disk motion can be found on www.eulersdisk.com of this little toy, including one very recently published in "Nature".

