
Suppose any polyhedron is a rubber balloon. You can then flatten it by getting rid of one face and enlarging it around all others. For example, the 
cube becomes:

You now need to prove that in the new flattened ballon V - E + F = 1, since you got rid of one face, but of no vertex and of no edge.

Clearly, for any polygon in the plane, with n vertices, V = n, E = n, F = 1, and V-E+F = n-n+1 = 1.

If one adds a polygon of x vertices and sharing y with another polygon, or with a group of polygons where V1 - E1 + F1 = 1, V = V1 + V2 + x - y, 
E = E1 + E2 + x - y + 1 and F = F1+1, therefore V - E + F = (V1 + V2 + x - y) - (E1 + E2 + x - y + 1) + (F1 + 1) = (V1 - E1 + F1) + (V2 - E2 + 1) -1 
= 1 + 1 - 1 = 1.

Thus V - E + F = 2 for any polyhedron (genus-zero).

The general Euler's Characteristic χ = V - E + F applies to non-convex polyhedra and even to ther shapes:

Pyramid 
(half of octahedron) 
V = 5    E = 8    F = 5   
5 - 8 + 5 = 2

Cube 
V = 8   E = 12   F = 6   
8 - 12 + 6 = 2 

Football 
V  = 60  E = 90 
F = 32 (12 pentagons 
+ 20 hexagons)
60 - 90 + 32 = 2

Torus: χ = 0 Double Torus:  χ  = -2  Klein bottle: χ = 0

Edelweiss (stellated dodecahedron):  χ  = 4

Euler's line
Leonhard Euler showed that in any triangle, the orthocenter (blue), the circumcenter (green), the centroid 
(yellow), and the center of the nine-point circle (red point)are collinear. This line is called Euler's line.

Euler's Characteristic

Is there a common feature between all these objects, and many others? Euler found the answer:  
V - E + F = 2, called Euler's formula  where V = number of vertices, E = number of edges and
F = number of faces.

Finally he proved that the following pairs of segments 
are proportional, and that each of these pairs have 
thvemselves a 1:2 length ratio:   

Tetrahedron 
V = 4    E = 6  F = 4   
4 - 6 + 4 = 2 
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Mobius Strip in Technorama, the Swiss Science Center: χ  = 0

Euler's geometry

Euler brick

An Euler brick is a cuboid with integer edges and integer 
face diagonals. A primitive Euler brick is an Euler brick 
with its edges relatively prime or equivalently a solution to 
the following system of diophantine equations

a2 + b2 = d2 
b2 + c2 = e2 
a2 + c2 = f 2

Euler found at least two parametric solutions to the 
problem. The smallest Euler brick has edges (a,b,c) = 
(240,117,44) and faces diagonals 267, 244, and 125. Paul 
Halcke discovered it in 1719.

Other solutions are (275, 252, 240), (693, 480, 140), 
(720, 132, 85), (792, 231, 160).
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