Euler's geometry

Euler's Characteristic
Is there a common feature between all these objects, and many others? Euler found the answer: V - E + F = 2, called Euler's formula where V = number of vertices, E = number of edges and F = number of faces.

Suppose any polyhedron is a rubber balloon. You can then flatten it by getting rid of one face and enlarging it around all others. For example, the cube becomes:

You now need to prove that in the new flattened balloon V - E + F = 1, since you got rid of one face, but of no vertex and of no edge.

Clearly, for any polygon in the plane, with n vertices, V = n, E = n, F = 1, and V - E + F = n - n + 1 = 1.

If one adds a polygon of x vertices and sharing y with another polygon, or with a group of polygons where V1 - E1 + F1 = 1, V = V1 + V2 + x - y, E = E1 + E2 + x - y + 1 and F = F1+1, therefore V - E + F = (V1 + V2 + x - y) - (E1 + E2 + x - y + 1) + (F1 + 1) = (V1 - E1 + F1) + (V2 - E2 + 1) - 1 = 1 + 1 - 1 = 1.

Thus V - E + F = 2 for any polyhedron (genus-zero).

The general Euler's Characteristic $\chi = V - E + F$ applies to non-convex polyhedra and even to their shapes:

- Torus: $\chi = 0$
- Double Torus: $\chi = -2$
- Klein bottle: $\chi = 0$
- Mobius Strip in Technorama, the Swiss Science Center: $\chi = 0$
- Edelweiss (stellated dodecahedron): $\chi = 4$

Euler's line
Leonhard Euler showed that in any triangle, the orthocenter (blue), the circumcenter (green), the centroid (yellow), and the center of the nine-point circle (red points) are collinear. This line is called Euler's line.

Euler's brick
An Euler brick is a cuboid with integer edges and integer face diagonals. A primitive Euler brick is an Euler brick with its edges relatively prime or equivalently a solution to the following system of diophantine equations:

\[a^2 + b^2 = c^2 \]
\[b^2 + c^2 = d^2 \]
\[a^2 + c^2 = f^2 \]

Euler found at least two parametric solutions to the problem. The smallest Euler brick has edges (a,b,c) = (240,117,44) and faces diagonals 267, 244, and 125. Paul Halcke discovered it in 1719.

Other solutions are (275, 252, 240), (693, 480, 140), (720, 132, 85), (792, 231, 160).

Euler's geometry

Euler brick

Euler's line